

GPHY 5513 3D Seismic Interpretation

Zonghu Liao (China University of Petroleum) Curvature, Reflector Rotation, and Reflector Convergence

Volumetric Curvature

Sign convention for 2D curvature attributes:

Anticline: k > 0Plane: k = 0Syncline: k < 0

3D Curvature and Topographic Mapping

Bent Creek Experimental Forest

Ecology and Management of Southern Appalachian Hardwoods

Bent Creek GIS Data

Classification of the Vegetation of the southern Appalachians

LFI and TSI: Topographic Variables to Quantify Meso- and Micro-scale Landforms

 Terrain Shape Index

 Landform Index

 C+ Program

(http://www.srs.fs.usda.gov/bentcreek)

3D Curvature and Molecular Docking

(http://en.wikipedia.org/wiki/Molecular_docking

3D Curvature and Biometric Identification of Suspicious Travelers

Circles in perpendicular planes tangent to a quadratic surface

(Mai et al., 2009)

Geometries of some folded surfaces

An interactive program showing curvature

(Wolfram demonstration project)

Curvature of picked horizons

kx-ky transform of time picks

Seismic horizon

k_x-k_v spectrum

The horizon exhibits different scale structures such as domes and basins on the broad-scale, faults on the intermediate-scale, and smaller scale undulations.

(Bergbauer et al, 2003)

kx-ky transform of time picks after bandpass filter

-0.02

10-12

Maximum curvature after k_x-k_y bandpass filter

(Bergbauer et al, 2003)

Radius of Curvature

3 km

Thermal imagery with sun-shading

(Cooper and Cowan, 2003)

Fractional derivatives with sun-shading

Red=0.75 Green=1.00 Blue=1.25

(Cooper and Cowan, 2003)

2D curvature estimates from inline dip, p:

1st derivative

 $\frac{dp}{dx} = F^{-1}[ik_x F(p)]$

fractional derivative (or 1st derivative followed by a low pass filter)

 $d^{\alpha}p/dx^{\alpha} \approx F^{-1}[i(k_x)^{\alpha}F(p)]$

(al-Dossary and Marfurt, 2006)

Attributes extracted along a geological horizon

(al-Dossary and Marfurt, 2006)

k_{mean}=1/2(d²T/dx²+d²T/dy²) – Caddo (Horizon pick calculation)

k_{mean} horizon slice – Caddo (volumetric calculation)

Coherence horizon slice – Caddo

5 km

0.9

1.0

.08

Attributes extracted along time slices

Vertical slice through seismic

(al-Dossary and Marfurt, 2006)

Time slice through coherence5 kmt=0.8 sB'

0.9

8.0

1.0

^B (al-Dossary and Marfurt, 2006)

Most-negative curvature computed at different wavelengths 5 km t=0.8 s

(al-Dossary and Marfurt, 2006)

В

10-27

(al-Dossary and Marfurt, 2006)

1.0

0.9

8.0

Coherence t=1.2 s в'

5 km

0.9

0.8

1.0

(al-Dossary and Marfurt, 2006)

Most negative curvature (α =0.25) $t=1_B2$ s

5 km

(al-Dossary and Marfurt, 2006)

+.25

0.0

-.25

Filters corresponding to "long-wavelength" and "short-wavelength" curvature computation

Attributes based on volumetric dip and azimuth

Attributes based on volumetric dip and azimuth

Most negative principal curvature, k₂

Most negative principal curvature, k₂, co-rendered with coherence

Most postive principal curvature, k₁

Most positive principal curvature, k₁, corendered with coherence

Both principal curvatures, k₁ and k₂, co-rendered with coherence

Reflector Shape

Attributes based on volumetric dip and azimuth

The shape index, s:

$$s = -\frac{2}{\pi} \operatorname{ATAN}(\frac{k_2 + k_1}{k_2 - k_1})$$

Principal curvatures

 $k_1 \ge k_2$

(Courtesy of Ha Mai)

Shape index and biometric identification

photographic image

distance scan

Shape indices

TOM CRUISE

MINORITY REPORT The STATE OF T

(Woodward and Flynn, 2004)

Shape index modulated by curvedness

Shape index modulated by curvedness, co-rendered with coherence

Filter to enhance bowl-shaped features

Bowl component co-rendered with coherence

Correlation of bowl shape component with collapse features

(data courtesy of Devon Energy)

Correlation of bowl shape component with collapse features

Bowl and coherence

(data courtesy of Devon Energy)

Structural Lineaments

Attributes based on volumetric dip and azimuth

Orientation of lineaments

Fractures are often stronger near the fold axis (sometimes parallel, often at an angle associated with Mohr's circle), and hence to the strike of the curvature anomalies

Strike modulated by most-negative principal curvature

Strike modulated by most-negative principal curvature, co-rendered with coherence

Volume visualization of structural lineaments

Generating rose diagrams

Structural lineaments displayed as roses

Reflector Convergence

Volumetric mapping of angular unconformities

(Barnes, 2002)

Computing the normal from apparent dip components

Arithmetic for mapping angular unconformities

$$\mathbf{c} = \mathbf{n} \times \mathbf{\psi} = \hat{\mathbf{x}} \left[n_y \left(\frac{\partial n_x}{\partial y} - \frac{\partial n_y}{\partial x} \right) - n_z \left(\frac{\partial n_y}{\partial z} - \frac{\partial n_z}{\partial y} \right) \right] \\ + \hat{\mathbf{y}} \left[n_z \left(\frac{\partial n_y}{\partial z} - \frac{\partial n_z}{\partial y} \right) - n_x \left(\frac{\partial n_x}{\partial y} - \frac{\partial n_y}{\partial x} \right) \right] \\ + \hat{\mathbf{z}} \left[n_x \left(\frac{\partial n_z}{\partial x} - \frac{\partial n_x}{\partial z} \right) - n_y \left(\frac{\partial n_y}{\partial z} - \frac{\partial n_z}{\partial y} \right) \right] \\ \text{Rotation about the each axis (reflector convergence)}$$

(Marfurt and Rich, 2010)

Attributes based on volumetric dip and azimuth

Rotation about the normal to the reflector

$$r = \mathbf{n} \bullet \mathbf{\psi} = n_x \left(\frac{\partial n_y}{\partial z} - \frac{\partial n_z}{\partial y} \right) + n_y \left(\frac{\partial n_z}{\partial x} - \frac{\partial n_x}{\partial z} \right) + n_z \left(\frac{\partial n_x}{\partial y} - \frac{\partial n_y}{\partial x} \right)$$

(Marfurt and Rich, 2010)

Reflector rotation co-rendered with coherence

Attributes based on volumetric dip and azimuth

Computational vs. Interpretational curvature

Normal fault seen by curvature

Strike slip fault not seen by curvature

Computational vs. Interpretational curvature

Channel not seen by curvature

Channels seen by curvature

Stacked channels giving composite curvature anomaly

Curvature, Reflector Rotation, and Reflector Convergence

In Summary:

- Volumetric curvature extends a suite of attributes previously limited to interpreted horizons to the entire uninterpreted cube of seismic data.
- The most negative and most positive principal curvatures appear to be the most unambiguous of the curvature images in illuminating folds and flexures.
- Curvature attributes are a good indicator of paleo rather than present-day stress regimes.
- Open fractures are a function of the strike of curvature lineaments and the azimuth of minimum horizontal stress.
- Channels appear in curvature images if there is differential compaction.
- Faults appear in curvature images if there is a change in reflector dip across the fault, reflector drag, if the fault displacement is below seismic resolution, or if the fault edge is over- or under-migrated.